Categories
Dev's Corner

ML Engineer là gì? Giải đáp bí ẩn xung quanh ML Engineer

Bài viết này sẽ giúp bạn nắm vững những bước đầu tiên đi tới sự nghiệp đầy triển vọng trong lĩnh vực Machine Learning (Học máy). Hãy cùng tìm hiểu ML Engineer (Kỹ sư học máy) là gì, trách nhiệm công việc của họ và cách thành công trong vai trò này.

ML Engineer là những lập trình viên thành thạo về kỹ thuật, những người chuyên nghiên cứu, xây dựng và thiết kế phần mềm tự chạy để tự động hóa các mô hình dự đoán. Kỹ sư ML xây dựng các hệ thống trí tuệ nhân tạo (AI) tận dụng các tập dữ liệu khổng lồ để tạo và phát triển các thuật toán có khả năng học hỏi và cuối cùng là đưa ra dự đoán.

Machine Learning Engineer. Ảnh: Sandiedo.edu
Machine Learning Engineer. Ảnh: Sandiedo.edu

Mỗi khi phần mềm thực hiện một thao tác, nó sẽ “học” từ những kết quả đó để thực hiện các thao tác trong tương lai chính xác hơn.

Thiết kế hệ thống học máy yêu cầu ML Engineer đánh giá, phân tích và tổ chức dữ liệu, thực hiện kiểm thử và tối ưu hóa quy trình học tập để giúp phát triển các mô hình học máy hiệu suất cao.


Dừng lại chút nào, nếu bạn đang #open_to_work, thử nghía qua các công việc đang tuyển trên Gamba nhé. Vào LINK NÀY để xem các job cần đến kỹ năng Machine Learning hoặc scan QR Code ở bên dưới nhé.

Xem và ứng tuyển các job Machine Learning
Xem và ứng tuyển các job Machine Learning

ML Engineer làm gì?

Kỹ sư học máy là những lập trình viên có kỹ năng cao, những người phát triển hệ thống trí tuệ nhân tạo (AI) sử dụng các tập dữ liệu lớn để nghiên cứu, phát triển và tạo ra các thuật toán có thể học và đưa ra dự đoán.

Nhìn chung, vai trò này chịu trách nhiệm thiết kế các hệ thống học máy, liên quan đến việc đánh giá và tổ chức dữ liệu, thực hiện các bài kiểm thử, nói chung là giám sát và tối ưu hóa các quy trình học máy để giúp phát triển các hệ thống học máy hoạt động mạnh mẽ.

Nhiều mô tả công việc yêu cầu kiến ​​thức và kinh nghiệm về các ngôn ngữ lập trình như Python, Java và C / C ++.

Mô tả công việc của kỹ sư học máy

Mặc dù các nhiệm vụ cụ thể sẽ khác nhau tùy thuộc vào quy mô của một tổ chức và nhóm khoa học dữ liệu tổng thể, nhưng mô tả công việc của Kỹ sư học máy điển hình sẽ bao gồm tất cả hoặc hầu hết các trách nhiệm sau:

  • Thiết kế, phát triển và nghiên cứu các hệ thống, mô hình và chương trình Machine Learning
  • Nghiên cứu, biến đổi và chuyển đổi các nguyên mẫu khoa học dữ liệu
  • Tìm kiếm và chọn tập dữ liệu thích hợp trước khi thu thập dữ liệu và mô hình hóa dữ liệu
  • Thực hiện phân tích thống kê và sử dụng kết quả để cải thiện mô hình
  • Đào tạo và đào tạo lại các hệ thống và mô hình ML khi cần thiết
  • Xác định sự khác biệt trong phân phối dữ liệu có thể ảnh hưởng đến hiệu suất của mô hình trong các tình huống thực tế
  • Trực quan hóa dữ liệu để có thông tin chi tiết hơn
  • Phân tích các trường hợp sử dụng của thuật toán ML và xếp hạng chúng theo xác suất thành công
  • Hiểu khi nào những phát hiện của bạn có thể được áp dụng cho các quyết định kinh doanh
  • Làm phong phú thêm các frameworj và thư viện ML hiện có
  • Xác minh chất lượng dữ liệu và / hoặc đảm bảo nó thông qua làm sạch dữ liệu

Nền tảng của ML Engineer

Dù bạn sẽ thấy ML Engineer có thể bắt đầu ở bất kỳ ngành nào, nhưng hầu hết đều có kiến ​​thức nền tảng về khoa học máy tính, kỹ thuật, toán học hoặc khoa học dữ liệu.

Nền tảng của ML Engineer
Nền tảng của ML Engineer. Ảnh: 365 Data Science

Một nghiên cứu từ Indeed đã nhấn mạnh sự khác biệt về nền móng của Kỹ ML Engineer và các vai trò liên quan khác, như (Data Scientist) nhà khoa học dữ liệu, Software Engineer (Kỹ sư phần mềm), Data Analyst (nhà phân tích dữ liệu) và Data Engineer (Kỹ sư dữ liệu).

Các con số của Indeed cho thấy vai trò Data Scientist có lĩnh vực nghiên cứu đa dạng nhất trong số các chức danh công việc liên quan được xem xét, trong khi vai trò Software Engineer thu hút những người có nền tảng giáo dục ít đa dạng nhất.

Trong trường hợp của ML Engineer, hơn 60% đến từ khoa học máy tính hoặc kỹ thuật và họ có khả năng xuất thân từ những nền tảng này gần như gấp đôi so với Data Scientist.

Theo nền tảng chuyên môn của họ, nghiên cứu cho thấy rằng chức danh công việc trước đây của ML Engineer có nhiều khả năng nhất là “Kỹ sư phần mềm”.

Nhiều ML Engineer khác hoạt động về mặt học thuật trước khi chuyển sang sự nghiệp machine learning.

Nhưng điều quan trọng cần nhớ là khoa học dữ liệu và học máy vẫn còn ở giai đoạn sơ khai vì các lĩnh vực nghiên cứu và nhiều công ty trong lĩnh vực công nghệ và hơn thế nữa đang tìm cách xây dựng các nhóm khoa học dữ liệu của họ, các con đường mới để trở thành Kỹ sư học máy đang trở nên khả thi.

Mặc dù bạn cần một nền tảng vững chắc về toán học và khoa học máy tính, nhưng nhiều người đang học các kỹ năng và lĩnh vực kiến ​​thức khác cần thiết để trở thành Kỹ sư học máy – ví dụ: hiểu phương pháp học có giám sát và không giám sát, học sâu, hồi quy, phân loại, phương pháp phân nhóm, và mạng nơ-ron – bằng cách tham gia 1 khóa học cấp chứng chỉ, nhiều khóa học trong số đó có thể được hoàn thành trực tuyến.

Đặc điểm của một ML Engineer thành công

Mọi chuyên gia về Học máy xuất sắc dường như sẽ có một vài đặc điểm chung. Dưới đây là các đặc điểm của một Kỹ sư học máy thành công:

Phẩm chất của 1 ML Engineer thành công. Ảnh: FactoryPal
Phẩm chất của 1 ML Engineer thành công. Ảnh: FactoryPal

Họ là những lập trình viên vững tay nghề

Nếu bạn đang muốn theo đuổi sự nghiệp trong lĩnh vực AI và máy học, bạn sẽ cần học cách lập trình. Một lập trình viên nên hiểu các ngôn ngữ được sử dụng thường xuyên bao gồm C ++, Java và Python và nó không dừng lại ở đó.

Các ngôn ngữ như R, Lisp và Prolog cũng đã trở thành những ngôn ngữ quan trọng cho việc học máy. Tuy nhiên, không phải tất cả các kỹ sư học máy thành công đều cần phải là chuyên gia về HTML hoặc JavaScript.

Họ có nền tảng vững chắc về Toán và Thống kê

Bạn không thể thành thạo machine learning nếu không biết chút nào về toán học. Cho dù bạn có nền tảng chính thức về toán học và thống kê hay không, bạn sẽ cần phải có năng lực toán học ít nhất ở cấp trung học phổ thông để theo kịp.

Trọng tâm của nhiều thuật toán học máy là một đặc tính chính thức của xác suất và các kỹ thuật bắt nguồn từ nó. Liên quan chặt chẽ đến vấn đề này là lĩnh vực thống kê, cái cung cấp các thước đo, phân phối và phương pháp phân tích khác nhau cần thiết để xây dựng và xác nhận các mô hình từ dữ liệu quan sát.

Về cơ bản, nhiều thuật toán machine learning là phần mở rộng của các bước lập mô hình thống kê.

Họ là những người giải quyết vấn đề sáng tạo

Các kỹ sư ML giỏi nhất được thúc đẩy bởi sự tò mò. Họ không phản ứng bằng sự thất vọng khi một mô hình hoặc thử nghiệm không thành công, mà thay vào đó, họ tò mò muốn tìm hiểu lý do.

Nhưng họ cũng giải quyết vấn đề một cách hiệu quả.

Các chuyên gia học máy giỏi nhất phát triển các phương pháp tiếp cận tổng quát để sửa lỗi và phân nhóm sai lạc (misclassification) trong các mô hình học máy của họ vì việc sửa các lỗi riêng lẻ sẽ tốn thời gian đồng thời làm cho các mô hình của bạn khó làm việc hơn và phức tạp hơn.

Điều quan trọng nữa là phải cân bằng giữa quyết tâm giải quyết vấn đề với hiểu biết thực tế rằng rất nhiều mô hình và thử nghiệm của bạn sẽ thất bại. Các ML Engineer giỏi nhất phát triển khả năng hiểu được thời điểm cần rời bỏ.

Họ yêu thích quy trình lặp đi lặp lại

Học máy về bản chất là một quá trình lặp đi lặp lại. Để đạt được hiệu quả trong vai trò này, một người cần thực sự tận hưởng phong cách phát triển đó.

Xây dựng một hệ thống học máy có nghĩa là người ta xây dựng một mô hình rất đơn giản một cách nhanh chóng, để bắt đầu, sau đó lặp lại để cải thiện nó theo từng giai đoạn.

Tuy nhiên, một lần nữa, một ML Engineer giỏi không thể quá cứng đầu. Bạn cần hiểu rõ khi nào cần dừng lại.

Luôn có thể cải thiện độ chính xác của bất kỳ hệ thống học máy nào bằng cách tiếp tục lặp lại hệ thống đó, nhưng người ta cần học cách phát triển trực giác khi nó không còn xứng đáng với thời gian và công sức.

Họ có trực giác mạnh mẽ về dữ liệu

Không có machine learning nào mà không phân tích dữ liệu. Một ML Engineer hoặc Data Scientist giỏi cần có khả năng nhanh chóng sàng lọc các tập dữ liệu lớn, xác định các mẫu và biết cách sử dụng dữ liệu đó để đưa ra các kết luận có ý nghĩa và có thể hành động được.

Gần giống như họ có giác quan thứ sáu đối với dữ liệu. Kỹ năng quản lý dữ liệu là rất quan trọng.

Chúng cũng nên hữu ích trong việc xây dựng các đường ống dữ liệu lớn (data pipeline).

Và người ta cũng cần hiểu sức mạnh của trực quan hoá. Để đảm bảo những thông tin đắt giá bạn khai thác được người khác hiểu và đánh giá đúng, bạn phải có sẵn các công cụ trực quan hóa dữ liệu như Excel, Tableau, Power BI, Plotly và Dash.

Những công việc tương tự với ML Engineer

Những công việc tương tự ML Engineer
Những công việc tương tự ML Engineer

Trong lĩnh vực rộng lớn hơn của khoa học dữ liệu (data science), có nhiều chuyên gia dữ liệu thực hiện các vai trò tương tự như ML Engineer. Dưới đây là một số vị trí có thể là một phần trong con đường sự nghiệp của một chuyên gia ML.

Data Scientist (Nhà khoa học dữ liệu)

Vai trò của Nhà khoa học dữ liệu nằm ở mối liên hệ giữa công nghệ và kinh doanh. Nhà khoa học dữ liệu phải hiểu những thách thức mà các công ty đang phải đối mặt và sau đó sử dụng phân tích dữ liệu và xử lý dữ liệu để tìm ra các giải pháp và cơ hội. 

Công việc của một Nhà khoa học dữ liệu là tìm ra những thông tin chi tiết hữu ích có thể hành động được ẩn trong dữ liệu phi cấu trúc và sử dụng dữ liệu đó để thực hiện các phân tích dự đoán. 

Các xu hướng và kiểu mẫu mà nhà khoa học dữ liệu nhận thấy giúp các công ty đưa ra quyết định dựa trên dữ liệu và cuối cùng là tăng doanh thu. Nhà khoa học dữ liệu cũng được kỳ vọng trình bày những phát hiện của họ bằng những hình ảnh trực quan bắt mắt.

Data Analyst (Nhà phân tích dữ liệu)

Các nhà phân tích dữ liệu quan tâm đến việc trực quan hóa, tổng hợp và xử lý dữ liệu.

Một trong những trách nhiệm hoặc kỹ năng quan trọng nhất của Nhà phân tích dữ liệu là tối ưu hóa, là nơi họ tạo và sửa đổi các thuật toán có thể được sử dụng để thu thập thông tin mà không làm hỏng dữ liệu.

Data Engineer (Kỹ sư dữ liệu)

Kỹ sư dữ liệu xây dựng và thử nghiệm hệ sinh thái dữ liệu lớn có thể mở rộng để các Nhà khoa học dữ liệu có hệ thống dữ liệu ổn định và được tối ưu để chạy các thuật toán của họ. 

Công việc của Kỹ sư dữ liệu cũng là cập nhật các hệ thống hiện có với các phiên bản nâng cấp của công nghệ hiện tại. 

Kỹ thuật dữ liệu cũng thường liên quan đến việc xây dựng các thuật toán để giúp các công ty hoặc khách hàng truy cập dễ dàng hơn vào dữ liệu thô.

AI Engineer (Kỹ sư trí tuệ nhân tạo)

Kỹ sư AI làm việc với các kỹ thuật máy học truyền thống như xử lý ngôn ngữ tự nhiên (NLP) và mạng nơ-ron để xây dựng các mô hình có tác dụng hỗ trợ cho các ứng dụng AI.

Computer Scientist (Nhà khoa học máy tính)

Các nhà Khoa học Máy tính chủ yếu giải quyết phần mềm và hệ thống phần mềm, bao gồm lý thuyết, thiết kế, phát triển và ứng dụng của chúng.

Software Engineer / Software Developer (Kỹ sư phần mềm)

Kỹ thuật phần mềm là sử dụng phân tích toán học và các nguyên tắc khoa học máy tính để thiết kế và phát triển phần mềm máy tính. 

Kỹ sư phần mềm phát triển tất cả các loại phần mềm, bao gồm hệ điều hành, trò chơi máy tính, ứng dụng và hệ thống điều khiển mạng.

Hàng ngày, tùy thuộc vào giai đoạn phát triển phần mềm, Nhà phát triển phần mềm sẽ đảm bảo các chương trình đang hoạt động chạy trơn tru, cập nhật, sửa lỗi và tạo chương trình mới. 

Kỹ thuật phần mềm trải dài trên nhiều loại công nghệ, từ thiết bị nhà thông minh đến trợ lý ảo.

ML Engineer làm việc với ai?

Tùy vào quy mô của một tổ chức, ML Engineer rất có thể sẽ làm việc như một thành viên của nhóm khoa học dữ liệu lớn hơn.

Nhóm đó có thể bao gồm Data Scientist, Data Analyst, Data Engineer, Data Architect (Kiến trúc sư dữ liệu) và Quản trị viên cơ sở dữ liệu (Database Administrator). 

Ngoài nhóm dữ liệu của riêng họ, ML Engineer có thể hợp tác với nhiều bên liên quan khác nhau với các kỹ năng khác nhau trong toàn bộ tổ chức, bao gồm tất cả mọi người từ lãnh đạo doanh nghiệp cấp cao đến nhóm tiếp thị, bán hàng, CNTT, phát triển phần mềm hoặc phát triển web, tùy thuộc vào mức độ thâm niên.

Những lý do để trở thành kỹ sư học máy

Nếu bạn tò mò về sự nghiệp trong lĩnh vực dữ liệu hoặc AI, thì đây là một số lý do hàng đầu để trở thành Kỹ sư học máy.

Có tiềm năng thu nhập cao

Indeed đã xếp hạng ML Engineer là công việc số 1 của năm 2019 vì lý do chính đáng: họ kiếm được mức lương trung bình là 148.485 USD.

Các con số của Indeed cũng cho thấy rằng một ML Engineer có thể kiếm được tới 200.000 USD tại một trong những thị trường lớn hơn của Mỹ.

Các ML Engineer ở San Francisco đã báo cáo mức lương trung bình chỉ ở phía nam là 200.000 USD trong khi ở New York, họ chỉ mang về nhà dưới 170.000 USD.

Nhu cầu về kỹ năng ML Engineering đang cao

Rất nhiều công ty đang quan tâm nhiều đến dữ liệu lớn và do đó, nhu cầu về các chuyên gia dữ liệu trên thị trường việc làm cao hơn bao giờ hết.

Thậm chí, đã có những báo cáo về cuộc đấu thầu tranh giành tài năng AI khi những gã khổng lồ trong lĩnh vực công nghệ gấp rút giành lấy những bộ óc hàng đầu trong ngành.

Một báo cáo gần đây của Robert Half về tương lai của công việc (the future of work) tiết lộ rằng 30% các nhà quản lý ở Mỹ được khảo sát cho biết công ty của họ hiện đang sử dụng AI và ML, và 53% dự kiến ​​sẽ áp dụng những công cụ đó trong vòng 3-5 năm tới.

Nói cách khác, không có dấu hiệu nào cho thấy thị trường việc làm màu mỡ này sẽ sớm biến mất.

Cơ hội học hỏi liên tục

Machine Learning là một lĩnh vực tương đối mới. Vẫn còn rất nhiều giải pháp, công cụ, thuật toán và ứng dụng đang chờ được tạo ra và khám phá.

Tương tự như Software Engineer, Kỹ sư ML về bản chất phải coi trọng việc học. Và việc sử dụng các khóa học, blog, hướng dẫn và podcast để luôn dẫn đầu trong một lĩnh vực non trẻ và đang thay đổi nhanh chóng là điều cần thiết.

Trên thực tế, Khảo sát Digital Skills năm 2020 của BrainStation cho thấy 61% chuyên gia dữ liệu tham gia các khóa học trực tiếp và 60% khác tập trung vào các hội thảo. Rõ ràng, giáo dục thường xuyên rõ ràng là một bộ phận cố định của lĩnh vực này.

Họ sống trên đỉnh cao công nghệ

Bạn có phải là một trong những người chỉ đơn giản là bị mê hoặc bởi công nghệ, cực kỳ phấn khích khi đọc về về những tiến bộ mới nhất trong AI hoặc các ứng dụng máy tính?

Ở vị trí này, bạn sẽ có cơ hội tạo ra sự thay đổi thực sự bằng cách làm việc trên các công nghệ mới nhất và sáng tạo nhất. Nếu bạn thích logic và lập trình, bạn sẽ thích học các ngôn ngữ lập trình mới cho các ứng dụng tiên tiến.

Đây cũng là một sự nghiệp tuyệt vời cho những ai thích tìm kiếm các ứng dụng thực tế cho toán học. Là một Kỹ sư Máy học, bạn có khả năng sử dụng đại số tuyến tính, giải tích, xác suất thống kê trong công việc hàng ngày của mình.

Machine Learning mang lại sự đa dạng

Nếu bạn thuộc tuýp người cảm thấy nhàm chán, thì sự nghiệp Machine learning sẽ có rất nhiều sự đa dạng. 

Hầu như bất kỳ ngành nào bạn có thể nghĩ đến sẽ được hưởng lợi từ việc đầu tư nhiều tiền hơn, thời gian và tài nguyên vào việc khai thác thông tin chi tiết từ dữ liệu, vì vậy bạn có thể chọn làm việc trong bất kỳ ngành nào mà bạn quan tâm.

Bạn cũng có cơ hội để thực sự tạo ra sự khác biệt. Bạn có thể tham gia một đội ngũ tạo ra bước đột phá lớn tiếp theo trong lĩnh vực chăm sóc sức khỏe, an ninh mạng, tiếp thị hoặc ô tô tự hành. Đó là một triển vọng thú vị đối với nhiều người.

Các kỹ năng trong Machine Learning

Để thành công với tư cách ML Engineer, bạn phải kết hợp kiến ​​thức và bộ kỹ năng của Kỹ sư phần mềm và Nhà khoa học dữ liệu. Điều đó có nghĩa là hiểu tất cả các khái niệm cơ bản của khoa học máy tính và phân tích dữ liệu, đồng thời sở hữu một số kỹ năng mềm cần thiết cho cả hai ngành.

Các kỹ năng trong Machine learning. Ảnh: Charlie You
Các kỹ năng trong Machine learning. Ảnh: Charlie You

Kỹ năng dữ liệu

Một Kỹ sư học máy được kỳ vọng sẽ có nhiều năng lực giống như Nhà khoa học dữ liệu, bao gồm mô hình hóa dữ liệu, trình độ kỹ thuật với các ngôn ngữ lập trình như Python và Java và hiểu cách đánh giá các thuật toán và mô hình dự đoán. Hiểu biết về xác suất và thống kê cũng sẽ rất hữu ích.

Kỹ năng kỹ thuật phần mềm

Một số khái niệm khoa học máy tính quan trọng đối với Kỹ sư ML là thuật toán (và biết cách viết thuật toán có thể sắp xếp, tối ưu hóa và tìm kiếm), hiểu cấu trúc dữ liệu và có kiến ​​thức về kiến ​​trúc máy tính. 

Vì đầu ra điển hình của Kỹ sư ML là phần mềm, họ cũng phải hiểu cách tuân theo các phương pháp tốt nhất về kỹ thuật phần mềm, đặc biệt là các phương pháp liên quan đến thiết kế hệ thống, kiểm soát phiên bản, kiểm thử và phân tích yêu cầu.

Kỹ năng học máy

Mặc dù một Kỹ sư học máy thường được cho là ngồi ở điểm giao giữa khoa học dữ liệu và kỹ thuật phần mềm, nhưng vẫn có một số năng lực đặc biệt quan trọng đối với các công việc ML.

Nhiều Kỹ sư học máy hiện đang được đào tạo về học sâu (deep learning), kiến ​​trúc mạng nơ-ron, xử lý ngôn ngữ tự nhiên (NLP) và lập trình động.

Kỹ năng mềm cho ML Engineer

Mặc dù machine learning là một chức danh kỹ thuật nhưng các kỹ năng mềm cũng rất quan trọng. Ngay cả khi bạn sở hữu kiến ​​thức hàng đầu về máy học, bạn cũng sẽ yêu cầu các kỹ năng trau chuốt trong giao tiếp, quản lý thời gian và làm việc nhóm.

Điều quan trọng nữa là Kỹ sư học máy phải cam kết học tập suốt đời. Do các lĩnh vực trí tuệ nhân tạo, học sâu, học máy và khoa học dữ liệu đang thay đổi nhanh chóng như thế nào, giáo dục thường xuyên là cần thiết cho bất kỳ chuyên gia nào muốn đi đầu.

Công cụ trong Machine learning

ML Engineer không chỉ phải có kiến ​​thức về cách viết mã và phát triển bằng các ngôn ngữ lập trình như Python, Java và C ++, nhiều kỹ sư học máy cũng thấy hữu ích khi sử dụng thành thạo các công cụ và tài nguyên sau:

  • TensorFlow
  • Spark và Hadoop
  • R Programming
  • Apache Kafka
  • MATLAB
  • Google Cloud ML Engine
  • Amazon Machine Learning

Tham khảo: BrainStation

Categories
Dev's Corner

AI Engineer là gì? Cách bắt đầu sự nghiệp AI Engineer

Các doanh nghiệp có thể sử dụng một lượng lớn dữ liệu mà họ tạo ra mỗi ngày để cải thiện và đơn giản hóa các tác vụ thường xuyên, diễn ra mỗi ngày. Với hệ thống A.I chuẩn chỉnh, các công ty có thể đem những tác vụ này ra khỏi đội ngũ của mình để họ có thể tập trung vào công việc quan trọng hơn. Các công nghệ như nhận dạng giọng nói, quản lý quy trình kinh doanh và xử lý hình ảnh chỉ là một số trong những công nghệ A.I thay đổi thế giới.

Các công ty cần AI Engineer (kỹ sư AI) để thiết lập các hệ thống này, duy trì và điều chỉnh chúng theo những thay đổi trong hoạt động kinh doanh. Trong bài viết này, chúng ta sẽ khám phá những gì AI Engineer làm, loại kỹ năng họ cần và cách bạn có thể bắt đầu con đường sự nghiệp AI Engineer của mình.

AI Engineer là gì?
AI Engineer là gì?

A.I là gì?

A.I (artificial intelligence), hay trí tuệ nhân tạo, sử dụng máy tính và máy móc để mô phỏng cách trí óc con người vận hành để hoàn thành các tác vụ giải quyết vấn đề và ra quyết định.

Nó kết hợp các tập dữ liệu mạnh mẽ mà chúng ta tạo ra hàng ngày với khoa học máy tính để đạt được mục tiêu này ở dạng đơn giản nhất.

Trong A.I, máy móc học hỏi kết quả của các hành động cụ thể bằng cách thu thập hàng núi dữ liệu quá khứ.

Sau đó, chúng sử dụng những hiểu biết sâu sắc có được từ quá trình này để đưa ra quyết định về các hành động trong tương lai và giải quyết vấn đề.

Đồng thời, dữ liệu về các quyết định của máy cũng được thu thập và được sử dụng để sửa chữa và hoàn thiện các hành động và quyết định trong tương lai.

Khác biệt giữa AI và Machine learning

Học máy (machine learning) và trí tuệ nhân tạo thường được gộp chung vào cùng một định nghĩa, nhưng chúng không nhất thiết giống nhau.

“Trí tuệ nhân tạo có thể được mô tả là khi máy móc thực hiện các nhiệm vụ theo cách thông minh, dựa trên các quy tắc đã đặt ra để giải quyết các vấn đề nhất định. Trí tuệ nhân tạo, hay A.I., đưa ra quyết định, học hỏi và giải quyết các vấn đề tương tự như cách con người làm.

Mặt khác, machine learning là tập hợp con của A.I. Đó là khi chúng ta cung cấp dữ liệu cho máy móc và để chúng tự học từ dữ liệu đó mà không được lập trình rõ ràng. Các mô hình học máy học hỏi từ dữ liệu và cố gắng cải thiện các dự đoán của nó theo thời gian”.

Vì vậy, học máy là một tập hợp con của A.I nhưng không phải tất cả A.I đều là học máy. A.I. là một lĩnh vực rộng hơn.

AI Engineer làm gì?

Các kỹ sư A.I phát triển các ứng dụng và hệ thống mới để:

  • Nâng cao hiệu suất và hiệu quả của các quy trình kinh doanh
  • Giúp doanh nghiệp đưa ra quyết định tốt hơn
  • Giảm chi phí
  • Tăng doanh thu và lợi nhuận

Đơn giản mà nói, họ sử dụng kỹ thuật phần mềm và khoa học dữ liệu để nối liền hoạt động kinh doanh với tự động hóa.

AI Engineer làm gì?
AI Engineer làm gì?

Nhiều nhiệm vụ của kỹ sư A.I trùng lặp với nhiệm vụ của Kỹ sư học máy (Machine learning engineer). Một số trách nhiệm của A.I. Kỹ sư bao gồm:

  • Phối hợp với lãnh đạo doanh nghiệp và đội ngũ phát triển phần mềm để xác định những quy trình kinh doanh nào có thể được cải thiện bằng A.I.
  • Tạo và duy trì quá trình phát triển A.I và cơ sở hạ tầng mà nó chạy trên đó.
  • Áp dụng các kỹ thuật máy học để nhận dạng hình ảnh.
  • Áp dụng các kỹ thuật xử lý ngôn ngữ tự nhiên (NLP) vào đọc văn bản và bản ghi âm để lấy thông tin chi tiết và phân tích từ dữ liệu này.
  • Xây dựng và duy trì chatbot tương tác với khách hàng.
  • Phát triển các giải pháp dựa trên trí tuệ nhân tạo bắt chước hành vi của con người để hoàn thành các tác vụ lặp đi lặp lại mà con người hiện đang thực hiện.
  • Xây dựng, đào tạo và hoàn thiện các mô hình học máy.
  • Đơn giản hóa quy trình học máy để các ứng dụng kinh doanh khác có thể tương tác với chúng bằng cách sử dụng API.
  • Xây dựng công cụ đề xuất cho các trang web mua sắm, dịch vụ phát trực tuyến và các ứng dụng khác.
  • Phát triển quy trình dữ liệu giúp quá trình chuyển đổi dữ liệu thô thành dữ liệu có cấu trúc cần cho các quy trình A.I được mượt mà.

Các kỹ năng cần thiết cho AI Engineer

Kỹ năng của AI Engineer
Kỹ năng của AI Engineer

A.I là một lĩnh vực rộng lớn và kỹ sư A.I đòi hỏi các kỹ năng của Kỹ sư phần mềm lẫn kỹ năng của Nhà khoa học dữ liệu. Thậm chí biết toán và thống kê cũng là điểm cộng.

Một kỹ sư A.I cần biết ít nhất một ngôn ngữ lập trình và thường sẽ học nhiều ngôn ngữ trong suốt sự nghiệp của họ. Nhiều công cụ mà các kỹ sư A.I sử dụng để hỗ trợ cho công việc sẽ cần kiến ​​thức về Python, R hoặc Java.

Để xây dựng và làm việc với các mô hình học máy, kỹ sư A.I sư cũng sẽ cần biết các nguyên tắc cơ bản của các framework học máy khác nhau, như TensorFlow, Theano, PyTorch và Caffe. Họ cũng sẽ cần biết cách biến dữ liệu thô thành các đặc tính mà mô hình học máy sử dụng.

Ngoài ra, một kỹ sư A.I phải có kinh nghiệm với nhiều loại mô hình học máy và loại công việc nào họ phù hợp nhất. Các loại này bao gồm:

  • Mạng nơron
  • Mạng nơron lặp lại
  • Thuật toán KNN (K-Nearest Neighbor)
  • GAN (General adversarial neighbor – mạng đối nghịch tạo sinh)
  • Học tập có giám sát
  • Học tập không giám sát
  • Random forest
  • Học tăng cường

Để thực sự tạo ra các mô hình mới và hiểu cách chúng hoạt động, chuyên gia A.I có thể phải biết đại số tuyến tính, xác suất thống kê thay vì sử dụng các mô hình dựng sẵn.

Các chủ đề này giúp bạn hiểu các mô hình Markov ẩn, Naive Bayes, mô hình hỗn hợp Gaussian và phân tích phân biệt tuyến tính – các kỹ thuật được sử dụng trong học máy.

Dữ liệu cũng là một phần quan trọng trong công việc của kỹ sư A.I. Rất nhiều dữ liệu được lưu trữ trong các hệ quản trị cơ sở dữ liệu quan hệ, vì vậy việc có kiến ​​thức cơ bản về SQL, ngôn ngữ của cơ sở dữ liệu là rất hữu ích.

Tuy nhiên, một số dữ liệu này sẽ được lưu trữ trong các kho dữ liệu phi cấu trúc hoặc bán cấu trúc – vì vậy việc biết các công nghệ dữ liệu lớn như Apache Spark, Apache Hadoop, Cassandra và MongoDB là một điểm cộng lớn.

Tuy nhiên, các kỹ sư A.I đòi hỏi nhiều hơn kỹ năng kỹ thuật. Họ cũng phải:

  • Tỉ mỉ và hướng đến chi tiết vì những bất đồng nhỏ trong dữ liệu có thể gây ra sự khác biệt lớn trong các mô hình học máy.
  • Có kỹ năng giao tiếp xuất sắc vì nhiều người mà họ làm việc cùng sẽ không hiểu nhiều về những gì họ làm. Họ sẽ phải giải thích kết quả nhiệm vụ của mình theo cách mà ai cũng có thể hiểu.
  • Tư duy bức tranh lớn đủ giỏi để hiểu nhu cầu kinh doanh và xây dựng các hệ thống A.I mang lại lợi ích cho công ty.

Mức lương của kỹ sư AI

Kỹ sư A.I có thu nhập khá tốt. Mức lương trung bình cho một kỹ sư A.I ở Mỹ là hơn $160,000. Ở các bang như California, mức trung bình lên tới gần 200.000 đô.

Nhu cầu về kỹ sư A.I luôn ở mức cao, vì vậy, kỳ vọng cơ hội việc làm và mức lương sẽ tăng trong tương lai. Cục Thống kê Lao động Hoa Kỳ dự kiến ​​tất cả các công việc của Software Developer sẽ tăng 22% trong thập kỷ tới và bao gồm cả kỹ sư A.I.

Làm thế nào để trở thành AI Engineer?

Đã qua rồi cái thời mà bằng cấp khoa học máy tính hoặc thậm chí bất kỳ bằng cấp đại học nào là điều kiện bắt buộc để trở thành kỹ sư A.I. Đang có nhu cầu rất lớn đối với kỹ sư A.I và các nhà tuyển dụng biết rằng rất nhiều A.I tay nghề cao thậm chí không có lấy tấm bằng nào. Họ làm điều đó vì họ yêu thích công việc.

Lộ trình trở thành AI Engineer
Lộ trình trở thành AI Engineer

Dưới đây là một số bước để bạn tiến nhập vào lĩnh vực này

1. Học hỏi kỹ năng thông qua chương trình đại học, coding bootcamp hoặc tự học

Kỹ sư AI là lĩnh vực thu hút rất nhiều chuyên gia từ nhiều nền tảng giáo dục khác nhau. Mặc dù hầu hết các vị trí ở cấp độ mới vào nghê đều đòi hỏi bằng cử nhân, thế nhưng chuyên ngành cũng tương đối linh hoạt chẳng hạn từ kỹ sư máy tính, hệ thống thông tin máy tính, khoa học dữ liệu và khoa học máy tính. 

Ngoài bằng cấp, bạn có thể phát triển bộ kỹ năng kỹ sư AI qua các bootcamp, như AI / Machine learning bootcamp, data science bootcamp hoặc coding bootcamp. Những chương trình cô đọng này thường rất tốt cho người mới vào nghề và không quá 1 năm là học xong.

Bạn còn có thể phát triển kỹ năng AI bằng cách tự học. Hãy tự mình nghiên cứu về AI và tham gia các lớp machine learning và deep learning. Bạn cũng nên cân nhắc học luôn các ngôn ngữ lập trình phổ biến như Python, Java, C++, R, Prolog, Lisp, Julia.

2. Nhận dự án, thực hành nâng cao kỹ năng và xây dựng portfolio

Nhà tuyển dụng luôn muốn tìm các ứng viên với hồ sơ và portfolio ‘thâm hậu’. Thậm chí lúc ở trường bạn cũng làm được portfolio từ các chương trình hoặc dự án nội bộ.

Portfolio sẽ làm nổi bật nhiều kỹ năng nhưng bạn cũng nên thể hiện khả năng tư duy khỏi khuôn khổ và tạo giá trị cho cộng đồng.

Ngoài hoàn thiện portfolio và gia tăng kinh nghiệm cho mình, hãy tham gia những dự án giúp phát huy ra nhiều kỹ năng. Ví dụ, bạn có thể tìm những dự án chuyên sâu về phân tích, chuyển ngữ…

3. Thực tập

Thực tập rất hữu ích với sinh viên AI engineering. Nhưng cơ hội như thế này là môi trường tốt để có bước chuẩn bị cho sự nghiệp, đào tạo thực tiễn, xây dựng hồ sơ, và kết nối tạo quan hệ. Ngoài phát triển các mối quan hệ mà có thể chuyển thành công việc toàn thời gian, thực tập sinh sẽ có thể thử qua nhiều loại công việc, công ty và chuyên ngành khác nhau.

Cơ hội thực tập tốt nhất trong lĩnh vực AI engineering còn tùy vào từng sinh viên và mục tiêu nghề nghiệp cụ thể của họ. Ví dụ, người học có thể cân nhắc đi sâu vào những chuyên môn phổ biến như smart technology, automotive system, và cybersecurity.

Hãy tập trung vào các kỹ năng AI engineering bạn cần để thỏa mãn mục tiêu dài hạn như lập trình, machine learning và deep learning, xử lý ngôn ngữ hay hình ảnh.

4. Xác định lộ trình sự nghiệp AI scientist

Khi số lượng ứng dụng Ai ngày càng tăng, số lượng công ty và lĩnh vực tuyển kỹ sư AI cũng tăng theo. Không chỉ ngành IT, kỹ sư AI còn làm việc ở cả sản xuất, vận chuyển, chăm sóc sức khỏe, kinh doanh và xây dựng. Họ đi sâu vào các ngành như Rô bốt, Chẩn đoán bệnh, Bảo mật và xe tự hành.

Thậm chí trong những ngành và chuyên môn đó, vai trò kỹ sư Ai cũng có thể khác nhau. Họ có thể làm việc như nhà khoa học nghiên cứu (research scientist) trong AI, kỹ sư rô bốt, lập trình viên hay nhà khoa học machine learning. Họ còn có thể đi sâu vào tương tác con người máy tính, tầm hình con người, hay business intelligence. 

5. Đạt chứng chỉ AI Engineer

Mặc dù bằng cấp hay chứng chỉ không nhất thiết phải có đối với kỹ sư AI, nhưng một chứng chỉ chuyên môn có thể cải thiện đáng kể cơ hội tuyển dụng và thăng tiến. Chúng chứng minh rằng người được chứng nhận đã được đào tạo bài bản, có kinh nghiệm.

Hầu hết các chứng chỉ đều thỏa mãn yêu cầu tối thiểu về giáo dục và kinh nghiệm. Ứng viên cần vượt qua bài kiểm tra để chứng minh trình độ của mình.

Đây là một số chứng chỉ khá tốt dành cho chuyên gia AI

6. Tạo hồ sơ và ứng tuyển

Nhà tuyển nào cũng tìm điều gì đó đặc biệt trong hồ sơ, nhưng luôn có biện pháp để khiến hồ sơ của bạn được chú ý. Các kỹ sư AI cần sửa đổi hồ sơ cho phù hợp với vị trí và công ty mà họ ứng tuyển. Họ nên nhấn mạnh các vai trò phù hợp, nhưng giới hạn nội dung chỉ trong 2 trang thôi.

Các kỹ sư AI nổi bật cũng chỉ nhất mạnh các kỹ năng kỹ thuật thích hợp, như ngôn ngữ lập trình, kinh nghiệm làm mô hình và thuật toán, kiến thức về data engineering và phân tích, kinh nghiệm với các dịch vụ và nền tảng. Ứng viên mới vào nghề thường ứng tuyển các vị trí junior, trợ lý hay điều phối.

Quy trình phỏng vấn cũng khác nhau tùy vị trí và nhà tuyển dụng. Người phỏng vấn thường kiểm tra kinh nghiệm làm việc trước đây của ứng viên. Các buổi phỏng vấn sẽ bao gồm câu hỏi về coding và thuật toán để kiểm tra kiến thức ứng viên.

Tham khảo: Codecademy, Zdnet

Categories
Dev's Corner

Data Labeling là gì? Hướng dẫn cơ bản Data Labeling cho Machine Learning

Hiểu biết về Data Labeling có hữu ích cho bạn?

Nếu bạn có một lượng lớn dữ liệu muốn sử dụng trong học máy (machine learning) hoặc học sâu (deep learning), bạn sẽ cần tới các công cụ và con người để làm giàu cho dữ liệu đó nhằm đào tạo, đánh giá và điều chỉnh mô hình của mình.

Hướng dẫn này sẽ hữu ích nhất nếu bạn có dữ liệu mà bạn có thể gắn nhãn và bạn đang đối mặt với một hoặc nhiều thách thức dưới đây.

1. Bạn có rất nhiều dữ liệu chưa được gắn nhãn

Hầu hết dữ liệu không được gắn nhãn và đó là thách thức đối với hầu hết các nhóm dự án AI.

Theo công ty phân tích Cognilytica, toàn bộ 80% thời gian dự án AI được dành cho việc thu thập, sắp xếp và gắn nhãn dữ liệu (data labeling), và đây là thời gian mà các nhóm không muốn bỏ ra vì họ đang trong cuộc chạy đua tới dữ-liệu-có-thể-sử-dụng được, tức là dữ liệu được cấu trúc và dán nhãn phù hợp để đào tạo và triển khai các mô hình.

Phân bổ thời gian cho các tác vụ dự án Machine Learning
Phân bổ thời gian cho các tác vụ dự án Machine Learning

2. Các nhãn dữ liệu của bạn có chất lượng thấp

Có rất nhiều lý do khiến dữ liệu được gắn nhãn của bạn có chất lượng thấp, nguyên nhân thường ở con người, quy trình hoặc công nghệ được sử dụng trong quy trình data labeling.

3. Quá trình gắn nhãn dữ liệu của bạn không hiệu quả hoặc tốn kém

Nếu bạn đang trả tiền cho các nhà khoa học dữ liệu (data scientist) để xử lý dữ liệu, thì tốt hơn bạn nên tìm cách thức khác.

Mức lương cho các nhà khoa học dữ liệu có thể lên tới 190.000 đô / năm. Thật phí phạm khi để những nhân sự được trả lương cao này dành thời gian vào công việc cơ bản, lặp đi lặp lại.

4. Bạn cần bổ sung QA (quality assurance) vào quy trình gắn nhãn dữ liệu của mình hoặc cải tiến quy trình QA đã thực hiện

Đây là nơi mà data labeling thường bỏ sót và có thể cung cấp giá trị đáng kể, đặc biệt là trong giai đoạn thử nghiệm và đánh giá mô hình học máy.


Dừng lại chút nào, nếu bạn đang #open_to_work, thử nghía qua các công việc đang tuyển trên Gamba nhé. Vào LINK NÀY để xem các job Data hoặc scan QR Code ở bên dưới nhé.

Xem và ứng tuyển các 'data' job
Xem và ứng tuyển các ‘data’ job

Dữ liệu được gắn nhãn (Labeled Data) và sự thật cơ bản

Dữ liệu được gắn nhãn là gì?

Trong học máy (machine learning), nếu bạn có dữ liệu đã được gắn nhãn, điều đó có nghĩa là dữ liệu của bạn được đánh dấu hoặc được chú thích, để hiển thị mục tiêu, là câu trả lời mà bạn muốn mô hình machine learning của mình dự đoán.

Nói chung, data labeling có thể hiểu là các tác vụ bao gồm gắn thẻ dữ liệu, chú thích, phân loại, kiểm duyệt, phiên âm hoặc xử lý.

Chú thích dữ liệu (data annotation) là gì?

Chú thích dữ liệu thường để nói về quá trình gắn nhãn dữ liệu. Chú thích dữ liệu và gắn nhãn dữ liệu thường được sử dụng thay thế cho nhau, mặc dù chúng có thể được sử dụng khác nhau tùy theo ngành hoặc tình huống sử dụng.

Dữ liệu được gắn nhãn làm nổi bật các đặc tính của dữ liệu – thuộc tính, đặc điểm hoặc phân loại – mà có thể được phân tích để tìm ra các hình mẫu giúp dự đoán mục tiêu.

Ví dụ: trong tầm nhìn máy tính dành cho xe tự hành, một người gắn nhãn dữ liệu có thể sử dụng công cụ gắn nhãn video từng khung hình để chỉ ra vị trí của biển báo đường phố, người đi bộ hoặc các phương tiện khác.

Data Labeling là gì?
Data Labeling là gì?

‘Human-in-the-Loop’ (HITL) là gì?

HITL (bán tự hành) tận dụng trí thông minh của con người và máy móc để tạo ra các mô hình học máy.

Trong cấu hình HITL, con người tham gia vào một vòng tròn cải tiến trong đó khả năng phán đoán của con người được sử dụng để đào tạo, điều chỉnh và kiểm tra một mô hình dữ liệu cụ thể.

Các nhãn trong học máy là gì?

Nhãn là thứ mà HITL sử dụng để xác định và gọi ra các đặc tính có trong dữ liệu.

Việc lựa chọn các đặc tính có tính thông tin, phân biệt và độc lập để gắn nhãn là cực kỳ quan trọng nếu bạn muốn phát triển các thuật toán trong nhận dạng hình mẫu, phân loại và hồi quy một cách hiệu quả.

Dữ liệu được gắn nhãn chính xác có thể cung cấp sự thật nền tảng để thử nghiệm và lặp lại các mô hình của bạn.

“Sự thật nền tảng” trong học máy là gì?

Trong học máy, “sự thật nền tảng” (ground truth) nghĩa là kiểm tra độ chính xác trong kết quả của các thuật toán ML so với thế giới thực. Về bản chất, đó là kiểm tra thực tế về độ chính xác của các thuật toán.

Thuật ngữ này được mượn từ khí tượng học, trong đó “sự thật nền tảng” đề cập đến thông tin thu được trên mặt đất nơi một sự kiện thời tiết xảy ra, dữ liệu đó sau đó được so sánh với các mô hình dự báo để xác định độ chính xác của chúng.

“Dữ liệu đào tạo” trong học máy là gì?

Dữ liệu đào tạo là dữ liệu đã được làm giàu (enriched data) mà bạn sử dụng để đào tạo mô hình hoặc thuật toán machine learning.

Ngày nay, các công ty thực hiện data labeling ra sao?

Các tổ chức sử dụng sự kết hợp giữa phần mềm, quy trình và con người để làm sạch, tạo cấu trúc hoặc gắn nhãn dữ liệu.

Nói chung, bạn có 4 phướng án đối với nhân sự làm data labeling:

  • Nhân viên – Họ thuộc biên chế của bạn, toàn thời gian hoặc bán thời gian. Mô tả công việc của họ có thể không bao gồm data labeling.
  • Các nhóm được quản lý – Bạn sử dụng các nhóm nhân viên gắn nhãn dữ liệu đã được kiểm tra, đào tạo và quản lý.
  • Nhà thầu – Họ là người lao động tạm thời hoặc tự do.
  • Crowdsourcing – Bạn sử dụng nền tảng của bên thứ ba để tiếp cận nhiều người lao động cùng một lúc.
Các phương án lực lượng lao động Data Labeling
Các phương án cho nhân sự Data Labeling

Data Labeling bao gồm một loạt các nhiệm vụ:

  • Sử dụng công cụ để làm giàu dữ liệu
  • Đảm bảo chất lượng cho việc gắn nhãn dữ liệu
  • Lặp lại quy trình, chẳng hạn như các thay đổi trong lựa chọn đặc tính dữ liệu, tiến trình tác vụ hoặc QA
  • Quản lý nhân viên gắn nhãn dữ liệu
  • Đào tạo thành viên mới trong nhóm
  • Lập kế hoạch dự án, vận hành quy trình và đo lường thành công

Dưới đây là 5 yếu tố cần thiết bạn cần xem xét khi cần làm data labeling cho machine learning:

1. Chất lượng và độ chính xác của dữ liệu – Điều gì ảnh hưởng đến chất lượng và độ chính xác?

Mặc dù các thuật ngữ thường được sử dụng thay thế cho nhau, nhưng chúng ta cần hiểu rằng độ chính xácchất lượng là hai thứ khác nhau.

  1. Độ chính xác đo lường mức độ sự sai biệt giữa việc gắn nhãn với sự thật nền tảng, hoặc các đặc tính được gắn nhãn trong dữ liệu nhất quán ra sao với các điều kiện trong thế giới thực. Điều này đúng cho dù bạn đang xây dựng mô hình thị giác máy tính (ví dụ: đặt các hộp giới hạn xung quanh các đối tượng trên cảnh đường phố) hay mô hình xử lý ngôn ngữ tự nhiên (NLP) (ví dụ: phân loại văn bản theo cảm tính xã hội).
  1. Chất lượng là độ chính xác trên toàn bộ tập dữ liệu. Công việc của tất cả nhân viên dán nhãn của bạn có giống nhau không? Việc gắn nhãn có luôn chính xác trên các tập dữ liệu của bạn không? Có chính xác dù bạn có 29, 89 hoặc 999 nhân viên gắn nhãn dữ liệu làm việc cùng một lúc không?

Dữ liệu chất lượng thấp có thể phản tác dụng hai lần: lần đầu tiên trong quá trình đào tạo mô hình và lần nữa khi mô hình của bạn sử dụng dữ liệu được gắn nhãn để thông tin cho các quyết định trong tương lai.

Để tạo, đánh giá và duy trì các mô hình học máy hiệu suất cao, bạn phải đào tạo và xác thực chúng bằng cách sử dụng dữ liệu đáng tin cậy và có thể tin cậy.

4 đặc điểm của Lực lượng lao động ảnh hưởng đến Chất lượng trong Data Labeling

Điều gì ảnh hưởng đến chất lượng dữ liệu trong việc gắn nhãn?

1. Kiến thức và bối cảnh

Trong data labeling, kiến ​​thức lĩnh vực cơ bản và hiểu ngữ cảnh là điều cần thiết để lực lượng lao động của bạn tạo bộ dữ liệu có cấu trúc, chất lượng cao cho học máy. 

Nhân viên gắn nhãn dữ liệu sẽ có chất lượng cao hơn khi họ hiểu ngữ cảnh hoặc biết về mục đích hoặc mức độ liên quan của dữ liệu mà họ gắn nhãn. 

Ví dụ: những người gắn nhãn dữ liệu văn bản của bạn phải hiểu khi nào một số từ nhất định có thể được sử dụng theo nhiều cách, tùy thuộc vào ý nghĩa của văn bản.

Để gắn thẻ từ “bass” một cách chính xác, họ sẽ cần biết liệu văn bản đó có liên quan đến cá hay âm nhạc. Họ có thể cần hiểu cách các từ có thể được thay thế cho những từ khác, chẳng hạn như “Kleenex” cho “khăn giấy”.

Để có dữ liệu chất lượng cao nhất, người gắn nhãn nên biết các chi tiết chính về ngành bạn phục vụ và công việc của họ liên quan như thế nào đến vấn đề bạn đang giải quyết. 

Thậm chí còn tốt hơn nữa khi một thành viên trong nhóm gắn nhãn của bạn có kiến ​​thức chuyên môn hoặc hiểu biết cơ bản về ngành mà dữ liệu của bạn phục vụ, vì vậy họ có thể quản lý nhóm và đào tạo các thành viên mới về các quy tắc liên quan đến ngữ cảnh, hoạt động kinh doanh hoặc sản phẩm và các trường hợp đặc thù. 

Ví dụ: từ vựng, định dạng và phong cách của văn bản liên quan đến chăm sóc sức khỏe có thể thay đổi đáng kể đối với ngành luật.

2. Linh hoạt (Agility)

Học máy là một quá trình lặp đi lặp lại.

Việc gắn nhãn dữ liệu phát triển khi bạn kiểm tra và đánh giá các mô hình của mình cũng như học hỏi từ kết quả của chúng, vì vậy, bạn cần chuẩn bị các tập dữ liệu mới và làm phong phú thêm các tập dữ liệu hiện có để cải thiện kết quả thuật toán của mình.

Nhóm data labeling của bạn phải linh hoạt trong việc kết hợp các thay đổi theo nhu cầu của người dùng cuối, các thay đổi trong sản phẩm của bạn hoặc bổ sung các sản phẩm mới.

Một nhóm data labeling linh hoạt có thể phản ứng với những thay đổi về khối lượng dữ liệu, độ phức tạp tác vụ và thời lượng tác vụ. Nhóm gắn nhãn của bạn càng dễ thích ứng, bạn càng có thể thực hiện nhiều dự án máy học hơn.

Khi bạn phát triển các thuật toán và đào tạo mô hình của mình, người gắn nhãn dữ liệu có thể cung cấp thông tin có giá trị (insight) về các đặc tính của dữ liệu – tức là thuộc tính, đặc điểm hoặc phân loại – sẽ được phân tích để tìm ra các hình mẫu giúp dự đoán mục tiêu hoặc trả lời những gì bạn muốn mô hình của mình dự đoán.

3. Mối quan hệ

Trong học máy, quy trình làm việc của bạn thay đổi liên tục.

Bạn cần những người gắn nhãn dữ liệu có thể phản ứng nhanh chóng và thực hiện các thay đổi trong quy trình làm việc của mình, dựa trên những gì bạn học được trong giai đoạn kiểm tra và đánh giá mô hình.

Để thực hiện loại công việc linh hoạt đó, bạn cần sự linh hoạt trong quy trình của mình, những người quan tâm đến dữ liệu của bạn và sự thành công của dự án và kết nối trực tiếp tới người lãnh đạo trong nhóm data labeling để bạn có thể lặp lại các đặc tính dữ liệu, thuộc tính và quy trình làm việc dựa trên những gì bạn học trong giai đoạn thử nghiệm và đánh giá.

4. Giao tiếp

Bạn sẽ cần trao đổi trực tiếp với nhóm gắn nhãn của mình.

Vòng phản hồi khép kín là một cách rất tốt để tạo dựng sự giao tiếp và cộng tác đáng tin cậy giữa nhóm dự án và những người gắn nhãn dữ liệu.

Người gắn nhãn có thể chia sẻ những gì họ rút ra được khi làm data labeling, vì vậy bạn có thể sử dụng thông tin này để điều chỉnh cách tiếp cận của mình.

Chất lượng được đo lường như thế nào trong data labeling?

Có bốn cách để đo lường chất lượng data labeling từ góc độ lực lượng lao động:

  1. Tiêu chuẩn vàng – Có một câu trả lời chính xác cho tác vụ. Đo lường chất lượng dựa trên các tác vụ đúng và sai.
  2. Đánh giá mẫu – Chọn một mẫu ngẫu nhiên của các tác vụ đã hoàn thành. Một nhân viên nhiều kinh nghiệm, chẳng hạn như trưởng nhóm hoặc quản lý dự án, sẽ xem xét độ chính xác của mẫu.
  3. Sự đồng thuận – Chỉ định một số người làm cùng một tác vụ và câu trả lời đúng là câu trả lời từ phần lớn các nhân viên gắn nhãn.
  4. IoU (Intersection over Union) – Đây là một mô hình đồng thuận thường được sử dụng để phát hiện đối tượng trong ảnh. Nó kết hợp con người và tự động hóa để so sánh các hộp giới hạn (bounding box) của hình ảnh thực được dán nhãn thủ công với các hộp giới hạn được dự đoán từ mô hình.

Hãy thoải mái lựa chọn một trong số các phương pháp đảm bảo chất lượng này thay vì bị bó buộc vào một mô hình đo lường chất lượng duy nhất.

2. Quy mô – Điều gì xảy ra khi khối lượng data labeling tăng lên?

Điều cần thiết thứ hai để gắn nhãn dữ liệu cho học máy là quy mô. Những gì bạn muốn là khả năng mở rộng hoặc giảm lực lượng lao động theo dự án và nhu cầu kinh doanh của bạn mà không ảnh hưởng đến chất lượng dữ liệu.

Gắn nhãn dữ liệu là một quá trình tốn thời gian và thậm chí còn nhiều hơn thế khi làm machine learning, đòi hỏi bạn phải lặp lại và phát triển các đặc tính dữ liệu khi bạn đào tạo và điều chỉnh mô hình của mình để cải thiện chất lượng dữ liệu và hiệu suất của mô hình. 

Khi độ phức tạp và khối lượng dữ liệu của bạn tăng lên, nhu cầu gắn nhãn của bạn cũng vậy. 

Chú thích video đặc biệt tốn nhiều công sức: mỗi giờ dữ liệu video được thu thập mất khoảng 800 giờ công (manhour) để chú thích. Một video dài 10 phút chứa khoảng 18.000 đến 36.000 khung hình, khoảng 30-60 khung hình mỗi giây.

Thời điểm cần mở rộng quy mô và thuê dịch vụ gắn nhãn dữ liệu?

Nếu tài nguyên đắt tiền nhất của bạn (nhà khoa học dữ liệu hoặc kỹ sư dữ liệu) đang dành thời gian đáng kể để xử lý dữ liệu cho machine learning hoặc phân tích dữ liệu, thì đó là lúc bạn nên xem xét mở rộng quy mô với dịch vụ gắn nhãn dữ liệu. 

Việc gia tăng khối lượng gắn nhãn dữ liệu, cho dù chúng xảy ra trong nhiều tuần hoặc nhiều tháng, sẽ ngày càng khó khăn hơn nếu tự quản lý.

Chúng cũng tiêu hao thời gian và sự tập trung của một số nguồn nhân lực đắt giá nhất : các nhà khoa học dữ liệu (data scientist) và kỹ sư machine learning. Nếu nhà khoa học dữ liệu của bạn đang gắn nhãn hoặc quấn dữ liệu, bạn sẽ phải trả tới 90 đô la một giờ.

Tốt hơn nên giải phóng một nguồn tài nguyên có giá trị cao như vậy cho các công việc phân tích và có tính chiến lược hơn, là trích xuất giá trị kinh doanh từ dữ liệu của bạn.

5 Bước mở rộng Data Labeling

1. Thiết kế cho năng lực của lực lượng lao động

Dịch vụ gắn nhãn dữ liệu có thể cung cấp quyền truy cập vào một nhóm lớn nhân sự. Crowdsourcing (nhân viên tuyển từ cộng đồng) cũng vậy, nhưng nghiên cứu của nhà phát triển công nghệ khoa học dữ liệu Hivemind cho thấy những nhân viên ẩn danh (từ crowdsourcing) cung cấp dữ liệu có chất lượng thấp hơn so với các nhóm được quản lý nếu so về các tác vụ gắn nhãn dữ liệu giống hệt nhau.

Tốt nhất là bạn nên làm việc với cùng một đội nhân viên gắn nhãn, vì khi mức độ quen thuộc của họ với các quy tắc kinh doanh, ngữ cảnh và các trường hợp đặc thù tăng lên, chất lượng dữ liệu sẽ cải thiện theo thời gian. 

Họ cũng có thể đào tạo khi có người mới khi họ tham gia nhóm. Điều này đặc biệt hữu ích với việc gắn nhãn dữ liệu cho các dự án machine learning, nơi chất lượng và tính linh hoạt để lặp lại là điều cần thiết.

2. Tìm sự linh hoạt

Hãy tìm kiếm sự linh hoạt trong việc mở rộng hoặc thu hẹp quy mô gắn nhãn. Bạn có thể phải gắn nhãn dữ liệu theo thời gian thực, dựa trên khối lượng dữ liệu đến được tạo ra.

Có thể doanh nghiệp của bạn có lượng mua hàng tăng đột biến theo mùa trong những tuần nhất định trong năm. Việc ra mắt sản phẩm có thể tạo ra lượng dữ liệu gắn nhãn tăng đột biến. Bạn hẳn sẽ muốn có một lực lượng lao động có thể điều chỉnh quy mô dựa trên nhu cầu của bạn.

3. Chọn dụng cụ thông minh

Cho dù bạn mua hay tự xây dựng, công cụ làm giàu dữ liệu bạn chọn sẽ ảnh hưởng đáng kể đến khả năng mở rộng gắn nhãn dữ liệu của bạn. 

Xin lưu ý rằng đó là một quá trình liên tục: các nhiệm vụ gắn nhãn dữ liệu của bạn ngày hôm nay có thể khác sau một vài tháng, vì vậy, bạn sẽ cần tránh các quyết định khiến bạn phải đi theo một hướng duy nhất có thể không phù hợp với nhu cầu của bạn trong tương lai gần.

Cho dù bạn đang phát triển hay đang hoạt động trên quy mô lớn, bạn sẽ cần một công cụ cho phép bạn linh hoạt để thực hiện các thay đổi đối với các đặc tính dữ liệu, quy trình gắn nhãn và dịch vụ gắn nhãn dữ liệu. 

Các công cụ có sẵn trên thị trường cung cấp cho bạn nhiều quyền kiểm soát hơn đối với quy trình làm việc, tính năng, bảo mật và tích hợp so với các công cụ được tích hợp sẵn. Chúng cũng cung cấp cho bạn sự linh hoạt để thực hiện các thay đổi.

4. Đo lường năng suất nhân viên

Năng suất có thể được đo lường theo nhiều cách khác nhau, có ba thước đo cụ thể cung cấp một cái nhìn hữu ích về năng suất của người lao động

  1. khối lượng công việc đã hoàn thành
  2. chất lượng công việc (độ chính xác cộng với tính nhất quán), và 
  3. sự gắn kết của nhân viên

Về phía người lao động, các quy trình mạnh mẽ dẫn đến năng suất cao hơn. Kết hợp công nghệ, công nhân và huấn luyện giúp rút ngắn thời gian gắn nhãn, tăng kết quả đầu ra và giảm thiểu thời gian chết. 

Chất lượng dữ liệu cao hơn khi đặt người gắn nhãn dữ liệu trong các nhóm nhỏ, đào tạo họ về các tác vụ và quy tắc kinh doanh của bạn, đồng thời cho họ thấy chất lượng công việc như thế nào.

Các trưởng nhóm khuyến khích cộng tác, học hỏi đồng đẳng, hỗ trợ và xây dựng cộng đồng. 

Các kỹ năng và điểm mạnh của người lao động được các trưởng nhóm của họ biết đến và đánh giá cao, những người này tạo cơ hội cho người lao động phát triển về mặt chuyên môn. 

Phương pháp tiếp cận theo nhóm nhỏ này, kết hợp với môi trường công cụ thông minh, đưa đến việc gắn nhãn dữ liệu chất lượng cao.

5. Giao tiếp hiệu quả giữa dự án của bạn và nhóm gắn nhãn dữ liệu

Giao tiếp có tổ chức, dễ dàng với nhóm gắn nhãn dữ liệu của bạn giúp mở rộng quy trình dễ dàng hơn. 

Dựa trên kinh nghiệm, chúng tôi đề xuất một vòng phản hồi khép kín để liên lạc với nhóm gắn nhãn của bạn để bạn có thể thực hiện các thay đổi có tác động nhanh chóng, chẳng hạn như thay đổi quy trình gắn nhãn hoặc lặp lại các đặc tính dữ liệu.

Khi việc gắn nhãn dữ liệu trực tiếp cung cấp cho các tính năng sản phẩm hoặc trải nghiệm khách hàng của bạn, thì thời gian phản hồi của người gắn nhãn cần phải nhanh và thông tin giao tiếp là chìa khóa.

Các nhà cung cấp dịch vụ gắn nhãn dữ liệu phải có thể làm việc trên các múi giờ và tối ưu hóa giao tiếp của bạn cho múi giờ ảnh hưởng đến người dùng cuối của dự án machine learning.

3. Định giá – Nên trả theo giờ hay theo tác vụ?

Dịch vụ gắn nhãn dữ liệu có giá bao nhiêu?

Thông thường, các dịch vụ gắn nhãn dữ liệu tính phí theo tác vụ hoặc theo giờ và mô hình bạn chọn có thể tạo ra các động cơ khác nhau cho các nhân viên gắn nhãn.

Nếu bạn trả tiền cho mỗi tác vụ, điều đó có thể khuyến khích họ thực hiện nhiều tác vụ nhất có thể, dẫn đến dữ liệu chất lượng kém sẽ làm trì hoãn việc triển khai và lãng phí thời gian quan trọng.

Ngược lại, những nhân viên được quản lý được trả lương cho thời gian của họ và được khuyến khích hoàn thành đúng nhiệm vụ, đặc biệt là những công việc phức tạp hơn và đòi hỏi tính khách quan. 

Sự khác biệt này có ý nghĩa quan trọng đối với chất lượng dữ liệu và tiếp theo, chúng tôi sẽ trình bày bằng chứng từ một nghiên cứu gần đây nêu bật một số điểm khác biệt chính giữa hai mô hình.

Nghiên cứu về chất lượng và chi phí gắn nhãn dữ liệu

Nhà phát triển công nghệ khoa học dữ liệu Hivemind đã tiến hành một nghiên cứu về chất lượng và chi phí gắn nhãn dữ liệu.

Họ đã tiến hành trên lực lượng lao động được quản lý, được trả lương theo giờ và nhân viên tự do hàng đầu của nền tảng dịch vụ hàng đầu, được trả lương theo tác vụ, để hoàn thành một loạt các tác vụ giống hệt nhau.

Mục tiêu của Hivemind là hiểu chi tiết hơn về những động cơ này – để xem nhóm nào phân phối dữ liệu chất lượng cao nhất và với chi phí tương đối.

Cùng một nhiệm vụ, hai nhóm gắn nhãn dữ liệu

Các công việc dựa trên văn bản và từ cơ bản đến phức tạp. Hivemind đã gửi các tác vụ cho các nhân viên tự do với hai mức hưởng khác nhau, trong đó một nhóm nhận nhiều hơn, để xác định xem chi phí ảnh hưởng như thế nào đến chất lượng dữ liệu.

Nhiệm vụ A: Phiên âm

Trong 7% trường hợp, nhân viên tự do đã phiên âm sai ít nhất một trong các số.

Khi họ được trả gấp đôi, tỷ lệ lỗi giảm xuống chỉ còn dưới 5%, đây là một sự cải thiện đáng kể.

Các nhân viên được quản lý chỉ mắc lỗi trong 0,4% trường hợp, một sự khác biệt quan trọng do hàm ý của nó đối với chất lượng dữ liệu.

Nhìn chung, đối với nhiệm vụ này, nhân viên tự do có tỷ lệ sai sót cao hơn 10 lần so với lực lượng lao động được quản lý.

Easy Transcription
Easy Transcription

Nhiệm vụ B: Phân tích cảm tính

Người lao động đã nhận được văn bản đánh giá của công ty từ một trang web đánh giá và phải xếp hạng tình cảm của bài đánh giá từ 1 đến 5. Xếp hạng thực tế, hay sự thật cơ bản, đã bị xóa. 

Nhân viên được quản lý có độ chính xác nhất quán, nhận được xếp hạng chính xác trong khoảng 50% trường hợp. 

Nhân viên tự do thì gặp vấn đề, đặc biệt là với những đánh giá kém.

Độ chính xác gần như là 20%, về cơ bản giống như phỏng đoán, đối với các bài đánh giá 1 và 2 sao. Đối với các đánh giá 4 và 5 sao, có rất ít sự khác biệt giữa các nhóm nhân viên.

Nhiệm vụ C: Trích xuất thông tin từ văn bản không có cấu trúc

Các nhân viên đã sử dụng tiêu đề và mô tả về đợt thu hồi sản phẩm để phân loại đợt thu hồi theo loại nguy cơ, chọn một trong 11 tùy chọn, bao gồm “khác” và “không đủ thông tin”.

Độ chính xác của nhân viên tự do là 50% đến 60%, bất kể số lượng từ. 

Nhân viên được quản lý đạt độ chính xác cao hơn, 75% đến 85%. Độ chính xác của nhân viên được quản lý cao hơn 25% so với độ chính xác của nhóm nhân viên tự do.

Định giá Gắn nhãn Dữ liệu: 3 Cân nhắc Quan trọng

Hãy tìm một dịch vụ gắn nhãn dữ liệu với các điều khoản và điều kiện thực tế, linh hoạt. Cụ thể:

  1. Cấu trúc chi phí có thể dự đoán, nhờ vậy bạn biết việc dán nhãn dữ liệu sẽ có giá như thế nào khi mở rộng quy mô và thông lượng tăng lên
  2. Định giá phù hợp với mục đích của bạn, chỉ trả cho những gì bạn cần để có được bộ dữ liệu chất lượng cao
  3. Linh hoạt thực hiện các thay đổi khi các tính năng dữ liệu và yêu cầu gắn nhãn của bạn thay đổi. Tránh các hợp đồng dịch vụ kéo dài nhiều tháng, phí nền tảng hoặc các điều khoản hạn chế khác.

4. Bảo mật – Dữ liệu của tôi sẽ được bảo vệ như thế nào?

Các rủi ro bảo mật của việc gắn nhãn dữ liệu thuê ngoài là gì?

Dịch vụ gắn nhãn dữ liệu có thể xâm phạm bảo mật của bạn khi nhân viên của họ:

  1. Truy cập dữ liệu của bạn từ một mạng không an toàn hoặc sử dụng thiết bị không có phần mềm bảo vệ
  2. Tải xuống hoặc lưu một số dữ liệu của bạn (ví dụ: ảnh chụp màn hình, ổ đĩa flash)
  3. Thực hiện gắn nhãn dữ liệu ở nơi công cộng
  4. Không được đào tạo, bối cảnh hoặc trách nhiệm liên quan đến các quy tắc bảo mật cho công việc
  5. Làm việc trong môi trường vật lý hoặc kỹ thuật số không được chứng nhận tuân thủ các quy định về dữ liệu mà doanh nghiệp của bạn phải tuân theo (ví dụ: HIPAA, SOC 2).

Bảo mật và nhân viên Data Labeling

Nếu bảo mật dữ liệu là một yếu tố trong quy trình machine learning, thì dịch vụ gắn nhãn dữ liệu phải có một cơ sở để công việc được thực hiện một cách an toàn, đào tạo chính sách và quy trình phù hợp – và phải có chứng chỉ để cho thấy quy trình của họ đã được đánh giá.

Quan trọng nhất là, dịch vụ gắn nhãn dữ liệu phải tôn trọng dữ liệu theo cách bạn và tổ chức của bạn làm. Họ cũng nên lập văn bản bảo mật dữ liệu cho cả 3 hạng mục sau:

  • Con người và Lực lượng lao động: Điều này bao gồm việc kiểm tra lý lịch đối với người lao động và có thể yêu cầu các nhà gắn nhãn ký thỏa thuận không tiết lộ (NDA) hoặc tài liệu tương tự nêu rõ các yêu cầu bảo mật dữ liệu của bạn. Lực lượng lao động có thể được quản lý hoặc đo lường mức độ tuân thủ. Nó có thể bao gồm đào tạo nhân viên về các giao thức bảo mật liên quan đến dữ liệu.
  • Công nghệ và Mạng: Người lao động có thể được yêu cầu sử dụng các thiết bị mà họ mang đến nơi làm việc, chẳng hạn như điện thoại di động hoặc máy tính bảng. Các tính năng tải xuống hoặc lưu trữ có thể bị tắt trên các thiết bị mà nhân viên sử dụng để gắn nhãn dữ liệu. Có khả năng an ninh mạng được nâng cao đáng kể.
  • Cơ sở vật chất và Không gian làm việc: Người lao động có thể ngồi trong một không gian ngăn người khác xem công việc của họ. Họ có thể làm việc ở một vị trí an toàn, với quyền truy cập chỉ cho phép những người được ủy quyền vào tòa nhà hoặc văn phòng nơi dữ liệu đang được dán nhãn. Giám sát video có thể được sử dụng để tăng cường an ninh vật lý cho tòa nhà và văn phòng.

Những lo ngại về bảo mật sẽ không ngăn bạn sử dụng dịch vụ gắn nhãn dữ liệu, dịch vụ này sẽ giúp bạn và nhóm của bạn tập trung vào phần chiến lược và sáng tạo nhất của machine learning là đào tạo mô hình, điều chỉnh và phát triển thuật toán.

5. Công cụ – Có cần một nền tảng công cụ để gắn nhãn dữ liệu không?

Điều cần thiết thứ 5 để gắn nhãn dữ liệu trong machine learning là công cụ, bạn sẽ cần công cụ cho dù bạn tự xây dựng hay mua từ bên thứ ba. Tại sao? 

Bởi vì việc gắn nhãn dữ liệu cấp độ sản xuất cho machine learning đòi hỏi các công cụ phần mềm thông minh và con người có kỹ năng. 

Một dịch vụ gắn nhãn dữ liệu phải có thể cung cấp các đề xuất và thực tiễn tốt nhất trong việc lựa chọn và làm việc với các công cụ gắn nhãn dữ liệu. Lý tưởng nhất là họ sẽ có quan hệ đối tác với nhiều nhà cung cấp công cụ khác nhau để cho bạn nhiều sự lựa chọn và làm cho trải nghiệm của bạn được mạch lạc.

Họ cũng sẽ cung cấp kiến ​​thức chuyên môn cần thiết để giao cho con người những tác vụ đòi hỏi bối cảnh, sự sáng tạo và khả năng thích ứng trong khi giao cho máy móc những nhiệm vụ đòi hỏi tốc độ, khả năng đo lường và tính nhất quán.

Tiến trình công việc

Giao việc cho con người và máy móc dễ dàng thực hiện hơn với các công cụ thân thiện với người dùng giúp chia nhỏ công việc gắn nhãn dữ liệu thành các tác vụ nguyên tử hoặc nhỏ hơn. 

Bằng cách chuyển đổi các nhiệm vụ phức tạp thành một loạt các thành phần nhỏ hơn, bạn có thể giao các tác vụ máy móc mà các công cụ đang thực hiện với chất lượng cao và để con người thực hiện các nhiệm vụ mà các công cụ này chưa thành thạo.

Việc chia nhỏ công việc thành các thành phần nguyên tử cũng giúp dễ dàng hơn trong việc đo lường, định lượng và tối đa hóa chất lượng cho mỗi tác vụ.

Mỗi loại nhiệm vụ có thể có lớp đảm bảo chất lượng (QA) riêng và quy trình đó cũng có thể được chia thành các nhiệm vụ nguyên tử.

Task Progression
Task Progression

Mọi tác vụ lập mô hình machine learning đều khác nhau, nên bạn có thể thực hiện vài lần chạy đơn giản để đưa ra các định nghĩa tốt và một bộ hướng dẫn, ngay cả trước khi bạn bắt đầu thu thập dữ liệu của mình.

Nếu bạn có thể chuyển đổi kiến ​​thức về mô hình của mình thành dữ liệu được gắn nhãn một cách hiệu quả, bạn đã giải quyết được một trong những vấn đề khó nhất trong học máy.

Sau một thập kỷ cung cấp các nhóm gắn nhãn dữ liệu, chúng tôi biết rằng đó là một quá trình cải tiến. Các nhiệm vụ gắn nhãn mà bạn bắt đầu có thể sẽ thay đổi sau một vài tháng. 

Đồng thời, bạn và nhóm gắn nhãn dữ liệu của bạn có thể điều chỉnh quy trình gắn nhãn của mình nhằm đạt được chất lượng cao và hiệu suất mô hình.

5 Bước chọn công cụ gắn nhãn dữ liệu

5 bước dưới đây rất quan trọng trong việc lựa chọn công cụ gắn nhãn dữ liệu để tối đa chất lượng dữ liệu và tối ưu đầu tư vào lực lượng lao động của bạn:

1. Thu hẹp công cụ dựa trên trường hợp sử dụng của bạn

Loại dữ liệu của bạn sẽ xác định các công cụ cần sử dụng. Các công cụ khác nhau ở các tính năng làm giàu dữ liệu, khả năng đảm bảo chất lượng (QA), loại tệp được hỗ trợ, chứng nhận bảo mật dữ liệu, tùy chọn lưu trữ, v.v.

Các tính năng để gắn nhãn có thể bao gồm hộp giới hạn, đa giác, điểm 2-D và 3-D, phân đoạn ngữ nghĩa, v.v.

2. So sánh lợi ích của tự xây và đi mua

Việc xây dựng công cụ của riêng bạn có thể mang lại những lợi ích có giá trị, bao gồm kiểm soát nhiều hơn quy trình gắn nhãn, thay đổi phần mềm và bảo mật dữ liệu.

Bạn cũng có thể dễ dàng giải quyết và giảm thiểu sự thiên vị ngoài ý muốn trong việc gắn nhãn của mình.

Tuy nhiên, việc mua một công cụ có sẵn trên thị trường thường ít tốn kém hơn về lâu dài vì nhóm của bạn có thể tập trung vào nhiệm vụ cốt lõi của họ hơn là hỗ trợ và mở rộng khả năng phần mềm, giải phóng nguồn lực quý giá cho các khía cạnh khác của dự án.

Khi mua, bạn có thể cấu hình công cụ cho các tính năng bạn cần và có sự hỗ trợ người dùng.

Có nhiều công cụ cho bất kỳ khối lượng công việc gắn nhãn dữ liệu nào và các nhóm luôn phát triển các công cụ mới và các tính năng nâng cao.

Khi bạn mua, về cơ bản bạn đang thuê quyền truy cập vào các công cụ, có nghĩa là:

  • Có các thực thể được tài trợ được trao cho sự thành công của công cụ đó
  • Có thể linh hoạt sử dụng nhiều hơn một công cụ, dựa trên nhu cầu của bạn; và
  • Nhà cung cấp công cụ hỗ trợ sản phẩm, vì vậy bạn không phải chi tiêu các nguồn lực kỹ thuật có giá trị cho việc tạo công cụ.

3. Xem xét quy mô và giai đoạn phát triển của tổ chức bạn

Chúng tôi nhận thấy giai đoạn công ty là một yếu tố quan trọng trong việc lựa chọn công cụ.

Bắt đầu

Có một số cách để bắt đầu trên con đường lựa chọn công cụ phù hợp. 

Đây là lúc mà câu hỏi quan trọng về việc xây dựng hay mua xuất hiện. Bạn sẽ muốn đánh giá các phương án có sẵn trên thị trường, bao gồm cả mã nguồn mở và xác định sự cân bằng hợp lý giữa các tính năng và chi phí để bắt đầu quy trình. 

Các nhà cung cấp rộng rãi cho cộng đồng thường bị tụt lại phía sau về mặt hoàn thiện tính năng so với các nhà cung cấp thương mại, những người tập trung 100% vào các công cụ gắn nhãn dữ liệu tốt nhất trong năng lực cốt lõi của họ. 

Ngoài ra, hãy nhớ rằng những người gắn nhãn dữ liệu có nguồn gốc từ cộng đồng sẽ không tiết lộ danh tính, vì vậy bối cảnh và chất lượng có thể là những điểm khó khăn.

Mở rộng quy trình

Nếu bạn đang trong giai đoạn phát triển, các công cụ thương mại có thể là lựa chọn tốt nhất của bạn. 

Bạn có thể tùy chỉnh, cấu hình và triển khai các tính năng một cách nhẹ nhàng với ít hoặc không cần tài nguyên phát triển. 

Nếu thích, các công cụ nguồn mở có thể cung cấp cho bạn nhiều quyền kiểm soát hơn đối với bảo mật, tích hợp và tính linh hoạt để thực hiện các thay đổi.

Lưu ý rằng, xây dựng một công cụ là một cam kết lớn: bạn sẽ đầu tư vào việc duy trì nền tảng đó theo thời gian và điều đó rất tốn kém.

Duy trì quy mô

Nếu bạn đang hoạt động ở quy mô lớn và muốn duy trì sự tăng trưởng đó theo thời gian, bạn có thể cân nhắc các công cụ thương mại, được tùy chỉnh đầy đủ và yêu cầu ít tài nguyên phát triển. 

Nếu bạn đi theo con đường mã nguồn mở, hãy đảm bảo tạo các quy trình dài hạn và tích hợp ngăn xếp sẽ cho phép bạn tận dụng bất kỳ lợi thế bảo mật hoặc linh hoạt nào mà bạn muốn tận dụng.

Quy mô và giai đoạn phát triển
Quy mô và giai đoạn phát triển

4. Đừng để sự lựa chọn lực lượng lao động của bạn khóa bạn vào một công cụ

Để có sự linh hoạt nhất và kiểm soát quá trình của bạn, đừng ràng buộc lực lượng lao động với công cụ.

Lựa chọn lực lượng lao động của bạn có thể làm giảm hoặc phá vỡ chất lượng dữ liệu, đây là trọng tâm của hiệu suất mô hình của bạn, vì vậy, điều quan trọng là phải giữ cho các lựa chọn công cụ của bạn luôn cởi mở. 

Các nhóm gắn nhãn dữ liệu tốt nhất có thể nhanh chóng áp dụng bất kỳ công cụ nào và giúp bạn điều chỉnh công cụ đó để đáp ứng tốt hơn nhu cầu gắn nhãn của mình.

5. Yếu tố trong yêu cầu chất lượng dữ liệu của bạn

Các tính năng đảm bảo chất lượng được tích hợp sẵn trong một số công cụ và bạn có thể sử dụng chúng để tự động hóa một phần của quy trình QA. 

Tuy nhiên, các tính năng QA này có thể sẽ không đủ, vì vậy, hãy tìm đến các nhà cung cấp lực lượng lao động được quản lý, những người có thể cung cấp nguồn nhân sự được đào tạo và có nhiều kinh nghiệm về các tác vụ gắn nhãn, để tạo ra dữ liệu đào tạo chất lượng cao hơn.

Cẩn thận với việc ký hợp đồng dài hạn

Một số nhà cung cấp dịch vụ gắn nhãn dữ liệu yêu cầu bạn ký hợp đồng nhiều năm cho lực lượng lao động hoặc công cụ của họ. 

Nếu nhà cung cấp dịch vụ gắn nhãn dữ liệu không đáp ứng các yêu cầu chất lượng của bạn, bạn cần sự linh hoạt khi kiểm tra hoặc chọn nhà cung cấp khác mà không bị phạt.

Nguồn: CloudFactory